首页> 外文OA文献 >Porous 3D carbon decorated Fe3O4 nanocomposite electrode for highly symmetrical supercapacitor performance
【2h】

Porous 3D carbon decorated Fe3O4 nanocomposite electrode for highly symmetrical supercapacitor performance

机译:多孔3D碳装饰的Fe3O4纳米复合电极可实现高度对称的超级电容器性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the present study, a hierarchical nanostructure of Fe3O4-porous hydrochar (p-Fe/HC) core shell nanocomposite was readily synthesized via a facile hydrothermal carbonization route followed by a KOH activation. In our new invention, hydrothermally formed core-shell nanoparticles underwent KOH activation to create micro- and mesopores forming porous hydrochar outer-shell on Fe3O4 nanoparticles core for improving capacitance performance. These porous structures eventually could act as potential electrolyte-accessible pathways which led to the contribution of pseudocapacitance connecting from the core (reaction at Fe3O4/electrolyte interface). Based on our electrochemical capacitive performance evaluation, p-Fe/HC nanocomposite electrode which comprised of 5 wt% Fe3O4 nanoparticles (±45 nm) could reach the specific capacitance of 259.3 F g-1 with a superior wide potential window of 1.8 V in 1 mol L-1 Na2SO4 aqueous electrolyte. By comparing KOH activation of pristine porous hydrochar and p-Fe/HC, an exceptionally high specific surface area (1712.8 m2 g-1) with bimodal type pores size distribution was observed. In addition, p-Fe/HC displayed a maximum energy density of 29.2 W h kg-1 at a power density of 1.2 kW kg-1, which is about 26% higher energy density than that of pristine porous hydrochar. In this manner, the synthesized porous hydrochar outer-shell could provide additional electrochemical stability to Fe3O4 core, preventing volume change at high current loading as well as conductive coating to enhance pseudocapacitance performance. Consequently, a symmetrical nanocomposite cell was successfully designed, with high capacitance retention of 95.1% after 5000 cycles.
机译:在本研究中,Fe3O4多孔炭(p-Fe / HC)核壳纳米复合材料的层状纳米结构可通过便捷的水热碳化途径并随后进行KOH活化而容易地合成。在我们的新发明中,对水热形成的核-壳纳米颗粒进行KOH活化,以在微孔和中孔上形成在Fe3O4纳米颗粒核上的多孔水炭外壳,从而改善电容性能。这些多孔结构最终可以充当潜在的电解质可及通道,从而导致假电容连接到核心(在Fe3O4 /电解质界面反应)。根据我们的电化学电容性能评估,由5 wt%的Fe3O4纳米颗粒(±45 nm)组成的p-Fe / HC纳米复合电极可以达到259.3 F g-1的比电容,在1中具有1.8 V的宽电位窗mol L-1 Na2SO4水溶液。通过比较原始多孔烃和p-Fe / HC的KOH活化,观察到具有双峰型孔尺寸分布的异常高的比表面积(1712.8 m2 g-1)。另外,p-Fe / HC在1.2 kW kg-1的功率密度下显示出29.2 W h kg-1的最大能量密度,这比原始多孔水煤焦的能量密度高约26%。以这种方式,合成的多孔碳氢化合物外壳可以为Fe3O4核提供额外的电化学稳定性,防止高电流负载下的体积变化以及导电涂层,以增强假电容性能。因此,成功设计了对称的纳米复合材料电池,经过5000次循环后,其电容保持率高达95.1%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号